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Abstract

Query-by-humming systems attempt to address the
needs of the non-expert user, for whom the most nat-
ural query format – for the purposes of finding a tune,
hook or melody of unknown providence – is to sing
it. While human listeners are quite tolerant of error
in these queries, a music retrieval mechanism must
explicitly model such errors in order to perform its
task. We will present a unifying view of existing mod-
els, illuminating the assumptions underlying their re-
spective designs, and demonstrating where such as-
sumptions succeed and fail, through analysis and real-
world experiments.

1 Introduction

When auditing a sung query – or indeed any musical production
– a trained ear can recognize certain problems: pitch drift, out
of tune notes, rhythm errors, unsteady tempo, and so forth. It is
quite natural for a music teacher to comment to a student that
“the third note was flat”, or “you’re speeding up in the third
measure”. These two statements represent two fundamentally
different views of error: the first indicates a belief that a single
note was “off”, and the second indicates a belief that a trend is
occurring.

The two views are, however, reconcilable. The teacher could
also, at the expense of clarity, assert that “you modulated down
to �� major on the third note, and modulated back to� major
on the fourth note” or “all of the notes after the third measure
were too short” respectively. Thus, it may seem reasonable in
the context of a query-by-humming (QBH) system to view er-
rors in one of two fundamental ways:

� Error occurs locally: any discrepancy between a query and
its target must be explained on a note by note (or frame by
frame) basis, though allowing for some overall differences
in register, key and tempo. This view reasonably models
the situation described by the first statement (the note is
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flat), and accounts for the other situation indirectly (these
notes are all too short).

� An error is always “cumulative”: errors occur with re-
spect to the context established by previous notes. This
view reasonably models the second statement (the tempo
increases), and accounts for the other situation indirectly
(seen as a modulation down, then a modulation up).

With respect to pitch and rhythm, most existing QBH systems
implicitly make one or the other assumption. There are com-
pelling arguments in favor of such assumptions, particularly
with regards to model complexity. In addition, neither assump-
tion is fatal even if both types of error are prevalent, as the al-
ternate interpretations shown above reveal.

Why is model parsimony dangerous? As the size of a database
increases, intelligently diagnosing error becomes more and
more critical: if we can explain a query with respect to its target
in terms of one error rather than four, the group of songs that
appear “just as close” is much smaller. Of course, most models
do not simply count the number of errors in a match, but the
intuition remains the same. In Section 5, we formalize a more
general form of this observation.

2 Errors

A query model should be capable of expressing the following
musical – or un-musical you might argue – transformations, rel-
ative to a target:

1. Insertions and deletions: adding or removing notes from
the target, respectively. Theseedits are frequently intro-
duced by transcription tools as well.

2. Transposition: the query may be sung in a differentkey or
register than the target. Essentially, the query might sound
“higher” or “lower” than the target.

3. Tempo: the query may be slower or faster than the target.

4. Modulation: over the course of a query, the transposition
may change.

5. Tempo change: the singer may speed up or slow down dur-
ing a query.

6. Non-cumulative local error: the singer might sing a note
off-pitch or with poor rhythm.



2.1 Edit Errors

Insertions and deletions in music tend to influence surrounding
events (Mongeau and Sankoff, 1990). For instance, when an
insertion is made, the inserted event and its neighbor tend to
occupy the temporal space of the original note: if an insertion
is made and the duration of the neighbors is not modified, the
underlying rhythmic structure (the beat) is changed. Similarly,
insertions will tend to modify the intervallic contour of a phrase,
to maintain the overall contour. Reflecting this process, we de-
scribe the edit operations as “elaborations” and “joins” for in-
sertion and deletion respectively, because the inserted notes are
seen as embellishing the original parent note, and deleted notes
result in the merging of multiple notes into a longer one.

This approach to edits reflects a natural musical interpretation.
A pragmatic motivation for our “musical” definition of edit is
transcriber error. In this context, we clearly would not expect
the onset times or pitches of surrounding events to be influenced
by a “false hit” insertion, or a missed note. The relationships
amongst successive events must therefore be modified to avoid
warping and modulation. Reflecting this bias, we use the terms
“join” and “elaboration” to refer to deletions and insertions, re-
spectively.

2.2 Transposition and Tempo
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Figure 1: Examples of errors

We account for the phenomenon of persons reproducing the
same “tune” at different speeds and in different registers or keys.
Few people have the ability to remember and reproduce exact
pitches (Terhardt and Ward, 1982), an ability known as “ab-
solute” or “perfect” pitch. As such, transpositional invariance
is a desirable feature of any query/retrieval model. The effect
of transposition is simply to add a certain value to all pitches.
Consider for example the transposition illustrated in Figure 1,
Section a, of����� = +4.

Tempo in this context is simply the translation of rhythm,
which describes duration relationships, into actual time dura-
tions. Again, it is difficult to remember and reproduce an exact
tempo. Moreover, it is very unlikely that two persons would
choose the same metronome marking, much less unconstrained
beat timing, for any piece of music. This is a natural “musical”
interpretation. The effect of a tempo scaling is simply to multi-
ply all inter-onset interval (IOI) values by some amount, where
the IOI is the time between the onsets of successive notes. Thus,
if the query is 50% slower than the target, we have a scaling
value of���	
 � ���, as shown in Figure 1, Section a.

2.3 Modulation and tempo change

Throughout a query, the degree of transposition or tempo scal-
ing can change, referred to asmodulation and tempo change,
respectively. Consider a query beginning with the identity trans-
position����� � � and identity tempo scaling���	
 � �, as
in Figure 1, Section b. When a modulation or tempo change is
introduced, it is always with respect to the previous transposi-
tion and tempo. For instance, on the third note of the example,
a modulation of�

� � �� occurs. For the remainder of the
query, the transposition is equal to� � � � ��, from the start-
ing reference transposition of 0. Similarly, the tempo change of
������ � ��� on the second note means that all subsequent
events occur at a tempo scaling of� � ��� � ���.

Original (transposed)

Query

modulation

local pitch error

Figure 2: Portion of a query on theAmerican National
Anthem

2.4 Local Pitch and IOI Errors

In addition to the “gross” errors we have discussed thus far,
there are frequently local errors in pitch and rhythm. These
errors are relative to the modifications described above. A lo-
cal pitch error of��� � simply adds some value to the “ideal”
pitch, where the ideal is determined by the relevant target note
and the current transposition. A local IOI error of� ��� has a
scalar effect on the ideal IOI, derived from the relevant target
note and the current tempo. Figure 1, Section c, shows exam-
ples of each error. Note that these errors do not propagate to
subsequent events, and as such are termednon-cumulative or
local errors. Transposition and tempo change are examples of
cumulative error.

In some cases, there are multiple interpretations for the source
of error in a query. Consider for instance Figure 2, which shows
a specific interpretation of three disagreements between a target
and query. The second note in the query is treated as a local
pitch error of -1. The final two notes, which are a semi-tone
sharper than expected (+1), are explained as a modulation. The
error model, described in the next section, considers all possible
interpretations, for instance considering the possibility that the
error in the second note is accounted for by two modulations
(before and after), and the final two notes by a pair of local
errors. Depending on our expectation that such things might
occur, one or the other interpretation might appear more likely.
In general, we would prefer to find the most direct possible ex-
planations for queries, since an increased likelihood of error in
the model can be shown to reduce discrimination (Meek and
Birmingham, 2002a).

3 Existing error models

For edits, we assume, like Mongeau and Sankoff (1990), that
overall rhythm is maintained, and make the natural musical as-
sumption that edits have a local impact on pitch. Many QBH
applications adopt this approach to rhythm (Mazzoni, 2001;
Meek and Birmingham, 2002b; Pauws, 2002; McNab et al.,
1997, 1996).

In this study, we are concerned primarily with the distinction



between local and cumulative error. Far less is known about
this area. This is largely a matter of convenience: a particular
musical representation will tend to favor one approach over the
other. For instance, we can adopt a pitch- and tempo-invariant
representation, using pitch interval and inter-onset interval ra-
tio (Pauws, 2002; Shifrin et al., 2002). Thisrelative representa-
tion establishes a new transposition and tempo context for each
note, thus introducing the implicit assumption that all errors are
cumulative (Pardo and Birmingham, 2002). Pollastri (2001) de-
termined that cumulative error is in fact far less common than
local error, a conclusion supported by our studies.

Another approach to the differences in transposition and tempo
context is to attempt multiple passes over a fixed context model,
and evaluate error rigidly within each pass by comparing the
query to various permutations of the target. Dynamic time-
warping approaches (Mazzoni, 2001) and non-distributed hid-
den Markov model techniques (Sorsa, 2001) are well-suited to
this approach. However, it is not possible to model, for instance,
a modulation, using these methods, only local error. Prelimi-
nary work (Wiggins et al., 2002) uses a similar approach, group-
ing together “transposition vectors” connecting query and target
notes. Such approaches are amenable to extensions supporting
cumulative error as well, but have not – to our knowledge – been
extended in this way.

Chai (2001) normalizes the tempo of the query by either au-
tomated beat-tracking, a difficult problem for short queries,
or, more effectively, by giving the querier an audible beat to
sing along with – a simple enough requirement for users with
some musical background. Again, there is an assumption that
the transposition will not change during a query, but the beat-
tracker can adapt to changing tempi.

3.1 Alternative approaches

We are concerned primarily with sequence based approaches
to music retrieval. Shifrin et al. (2002) relax this assumption
somewhat, by translating targets into Markov models where the
state is simply a characteristic relationship between consecu-
tive notes, allowing for loops in the model. Downie (1999);
Tseng (1999) model music as a collection of note�-grams, and
apply standard text retrieval algorithms. In query-by-humming
systems, the user is searching for a song that “sounds like...”
rather than a song that is “about” some short snippet of notes,
if it makes sense to discuss music in these terms at all1. For
this reason, we believe that sequence-based methods can more
accurately represent music in this context.

4 Johnny Can’t Sing (JCS): A unifying model

We have developed a system supporting the simultaneous mod-
elling of local and cumulative error known as “Johnny Can’t
Sing” (Meek and Birmingham, 2002b). This system provides
a unique opportunity to examine the effectiveness of these two
approaches, both in isolation and together. A detailed descrip-
tion of the training and matching algorithms used by JCS can
be found in a technical report (Meek and Birmingham, 2002a).

JCS is essentially an extended hidden Markov model (Rabiner,
1989) (HMM), which associates the notes in a query with the
notes in a target through a sequence ofhidden states. The
fundamental errors (transposition and tempo difference) recom-

1Beethoven’s Fifth Symphony is a notable exception

mend a fairly detailed state definition to describe this relation-
ship. Each alignment of target and query notes must be con-
sidered in each of the possible tempo and transposition con-
texts. Consider for instance an octave-invariant representation
(for instance, pitch-class): there are twelve possible transposi-
tions, given semi-tone quantization. Further, we must model
tempo differences. Consider a rhythm quantization scheme that
allows for nine tempo mappings. In a song with� notes, there
are thus�� � � � � states, ignoring the various alignment or edit
permutations.

In Figure 3.A, the conventional HMM dependency structure is
shown. The hidden states (�), are each defined by a tuple,
�� � ��	�
��	�
� ��	�
�, and according to the first-order Markov
assumption, the current state depends only on the previous state.
�	�
 is the “Edit” type associated with the state, defining the
way in which query and target notes “line up”.�	�
 is the “Key”
component, or the transposition relating the pitch in the target
to the pitch in the query.� �	�
 is the “Speed”, or the tempo
mapping in the transformation.

Observations (�) are assumed to depend only on the hidden
state, and are defined by
� = �������������� = �� 	�
� �	�
�.
Given this view of the query world, we need to determine – us-
ing machine learning techniques or by arduous hand-labelling –
the probability of each combination of pitch and rhythm in the
query observation given each combination of alignment, trans-
position and tempo in the hidden state.

It quickly becomes infeasible to explicitly model each of these
states. Distributed state representations help control this com-
plexity. The idea is to assume some degree of independence
between the components of a model. The second view isolates
the components of a hidden state and the components of an ob-
servation (Figure 3.B), and illustrates a more reasonable inter-
pretation of the dependencies between these components. Only
the previous edit information (�) determines the likelihood of
various legal extensions to the alignment. The transposition (�)
depends on both the previous transposition and the current edit
type, since the degree of modulation and the current position in
the target influence the probability of arriving at some transposi-
tion level. A pitch observation (� ) depends only on the current
edit-type and the current transposition, which tell us which pitch
we expect to observe: the “emission” probability is then simply
the probability of the resulting error, or discrepancy between
what we expect and what we see. There is a similar relationship
between the edit-type (�), tempo (� �), and rhythm observation
(�).

A simple example illustrates the musical meaning of these ele-
ments. Consider the state of the model where� relates the join
of the first two target notes to a query note,� is a transposition
of +2 semitones, and� � is a tempo scaling of 1.25. The se-
quence of transformations corresponding to these components
of state is shown in Figure 4, starting from the original target
notes. The resulting transformed event is compared with the
query event (shown in black), which is said to have a pitch error
of +1 and a rhythm error, expressed as a factor, of 0.8.

5 Analysis

To maintain generality in our discussion, and draw conclusions
not specific to our experimental data or approach to note repre-
sentation, it is useful to analyze model entropy with respect to
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cumulative and local error. Intuitively, the entropy measures our
uncertainty about what will happen next in the query. Formally,
the entropy value of a process is the mean amount of informa-
tion required to predict its outcome. When the entropy is higher,
we will cast a wider net in retrieval, because our ability to an-
ticipate how the singer will err is reduced.

What happens if we assume cumulative error with respect to
pitch when local error is in fact the usual case? Consider the
following simplified analysis: assume that two notes are gener-
ated with pitch error distributed according to a normal Gaus-
sian distribution, where� is the random variable represent-
ing the error on the first note, and� represents the second.

Therefore we have:��� � � � �� �  � � ��
��
�
���

� and

�� ��� � � �� � �� � ��
��
�
���

� . What is the distribution over
the error on theinterval? If ! is the random variable represent-
ing the interval error, we have:! � � � � . Since��� � is
symmetrical about � �, where� is the convolution operator,

we have:���"� � �� � �� �"� �
��
��
�
���

� , which corresponds

to a Gaussian distribution with variance#� � � (as compared
with a variance of#� � � for the local error distribution). Given
this analysis, the derivative entropy for local error is equal to
�
� �
����$#

�� � �� � ����, and the derivative entropy of the
corresponding cumulative error is roughly 1.77. The underly-
ing distributions are shown in Figure 5. It is a natural intuition
that when we account for local error using cumulative error –
as is implicitly done with intervallic pitch representations – we
flatten the error distribution.

While experimental results indicate that local error is most com-
mon, sweeping cumulative error under the rug can also be dan-
gerous, particularly with longer queries. When we use local er-
ror to account for a sequence of normally distributed cumulative
errors represented by the random variables��� ��� � � � � ��, the
local error (!) must absorb thesum over all previous cumula-
tive errors: ! �

�
�

�����. For example, when a user sings
four consecutive notes cumulatively sharp one semi-tone, the
final note will be, in the local view, four semi-tones sharp. If
cumulative error is normally distributed with variance# �, the
expected distribution on local error after� notes is normally
distributed with variance�#� (a standard result for the summa-
tion of Gaussian-distributed random variables). As such, even a
low probability of cumulative error can substantially effect the

performance of a purely local model over longer queries.

The critical observation here is that each simplifying assump-
tion results in the compounding of error. Unless the underlying
error probability distribution corresponds to an impulse func-
tion (implying that no error is expected), the summation of ran-
dom variables always results in an increase of entropy. Thus,
we can view these results as fundamental to any retrieval mech-
anism.

6 Results

6.1 Experimental setup

160 queries were collected from five people – who will be de-
scribed as subjects A-E, none involved in MIR research. Subject
A is a professional instrumental musician, and subject C has
some pre-college musical training, but the remaining subjects
have no formal musical background. Each subject was asked to
sing eight passages from well-known songs. We recorded four
versions of each passage for each subject, twice with reference
only to the lyrics of the passage. After these first two attempts,
the subjects were allowed to listen to a MIDI playback of that
passage – transposed to their vocal range – as many times as
needed to familiarize themselves with the tune, and sang the
queries two more times.

6.2 Training

JCS can be configured to support only certain kinds of er-
ror. For instance, it can be told to assume that only local er-
ror occurs, or only cumulative error. Regardless of the setup,
JCS uses a training algorithm based on the Baum-Welch re-
estimation approach (Baum and Eagon, 1970; Meek and Birm-
ingham, 2002a). This approach learns parameters thatmaximize
the expectation of the training examples, which intuitively cor-
responds to our goal of finding the most direct explanation pos-
sible for the errors that occur in a collection of queries. It can
be shown that the procedure converges to a distribution deter-
mined by the frequency of the events being modelled, though
the “events” in the hidden layer can only be interpreted indi-
rectly. Because of the multiple hypothesis problem in the hid-
den layer, the optimization procedure converges to only local
maxima in the search space, but by appropriately seeding the
algorithm – for instance with data found by hand-labelling the
training data, and with random restarts – we can find a consis-
tent and efficient characterization of error.

The results of this training, for three versions of the model
over the full set of 160 queries, are shown in Figure 6, which
indicates the overall parameters for each model. For all ver-
sions, Mongeau-Sankoff-style consolidation and fragmentation
are employed and result in a similar distribution: the probabil-
ity of no edit is roughly 0.85, the probability of consolidation
is 0.05 and the probability of fragmentation is 0.1. These val-
ues are related primarily to the behavior of the underlying note
segmentation mechanism.

In one of the models, both local and cumulative error are con-
sidered, labelled “Full” in the figure. Constrained versions, with
the expected assumptions, are labelled “Local” and “Cumula-
tive” respectively. It should be apparent that the full model
permits a tighter distribution over local error (rhythm error and
pitch error) than the simplified local model, and a tighter dis-
tribution over cumulative error (tempo change and modulation)



than the simplified cumulative model.
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Figure 6: Result of training

When JCS has the luxury of considering both cumulative and
local error, it converges to a state where cumulative error is
nonetheless extremely unlikely (with probability 0.94 there is
no change in tempo at each state, and with probability of 0.93
there is no modulation), which strengthens the view espoused
by Pollastri (2001) that local error is indeed the critical compo-
nent. This flexibility however allows us to improve our ability
to predict the local errors produced by singers, as evidenced by
the sharper distribution as compared with the purely local ver-
sion. The practical result is that the full model is able toexplain
the queries in terms of the fewest errors, and converges to a state
where the queries have the highest expectation.

6.3 Retrieval performance

Given the analysis in Section 5, it is interesting to consider the
effects on retrieval performance when we assume that only lo-
cal, only cumulative, or both types of error occur. To this end,
we generated a collection of 10000 synthetic database songs,
based on the statistical properties (pitch intervals and rhythmic
relationships) of a 300 piece collection of MIDI representations
of popular and classical works. In our experiments, we compare
several versions of JCS:

1. ‘Full’ model: this version of JCS models both local and
cumulative error.

2. ‘Restricted’ model: a version of the full model which lim-
its the range of tempo changes and modulations (����
and�� semitone respectively). This seems like a reason-
able approach because training reveals that larger cumula-
tive errors are extremely infrequent.

3. ‘Local’ model: only local error is modelled.

4. ‘Cumulative’ model: only cumulative error is modelled.

We first randomly divided our queries into two sets for train-
ing the models and testing respectively. After training each of
the models on the 80 training queries, we evaluated retrieval
performance on the remaining 80 testing queries. In evaluat-
ing performance, we consider the rank of the correct target’s
match score, where the score is determined by the probability
that each database song would “generate” the query given our
error model. In case of ties in the match score, we measure the
worst-case rank: the correct song is counted below all songs
with an equivalent score. In addition to the median and mean
rank, we provide the mean reciprocal rank (MRR): this is a met-
ric used by TREC (Voorhees and Harman, 1997) to measure text
retrieval performance. If the ranks of the correct song for each
query in a test set are��� ��� � � � � ��, the MRR is equal to, as the
name suggests:�

�

�
�

���
�
	�

.

The distribution of ranks is summarized in Figure 7. The rank
statistics are as follows:

Full Restricted Local Cumulative
MRR 0.7778 0.7602 0.7483 0.3093

Median 1 1 1 68.5
Mean 490.6 422.9 379.5 1861
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Figure 7: Distribution of ranks over real queries
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The cumulative error model performs quite poorly in compar-
ison with the other approaches, owing to the prevalence of lo-
cal error in our query collection. We see little evidence of the



reverse phenomenon: notice that restricting or ignoring cumu-
lative error does not have a notable impact on retrieval perfor-
mance except on the longest queries, where MRR decreases as
we diminish the contribution of cumulative error. Figure 8 in-
dicates this trend, where each group represents the aggregate
statistics for a roughly equally-sized subset of the test queries,
grouped by length. These results agree with the basic entropy
analysis, which predicts greater difficulty for ‘local’ approaches
on longer queries.

It is informative to examine where JCS fails. We identify two
classes of failure:

� Alignment assumption failure: This is the most common
type of error. JCS assumes that the entire query is con-
tained in the database. When the segmenter misclassifies
regions before and after the query proper as notes, this sit-
uation arises. JCS must to explain theentire query in the
context of each target, including these margins. JCS does
however model such added noteswithin the query, using
the elaboration operation.

� Entropy failure: errors are so prevalent in the query that
many target to query mappings appear equally strong. In-
terestingly, we achieve solid performance in many cases
where the queries are – subjectively – pretty wildly off
the mark. While using a different underlying representa-
tion might allow us to extract additional useful informa-
tion from queries, this does not alter the fundamental con-
clusions drawn about retrieval behavior with different ap-
proaches to error.

7 Conclusions

We have demonstrated that various assumptions about the na-
ture of errors in retrieval models can have a serious impact on
performance, both in the general case through analysis, and in
the specific case of the query representation used by JCS. De-
signers of QBH systems should consider these important inter-
actions.

The alignment assumption failure, which will likely prove more
serious in experiments with less strict controls, warrants a re-
thinking of our assumptions about where queries come from,
and suggest a shift to local-alignment approaches, or variations
thereof. In addition, it would be useful to broaden the scope of
this work by examining the effects of various representations,
for instance using un-quantized and un-segmented views of a
query.
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