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Abstract

A technique for harmonic analysis is presented that
partitions a piece of music into contiguous regions
and labels each with the key, mode, and functional
chord, e.g. tonic, dominant, etc. The analysis is per-
formed with a hidden Markov model and, as such, is
automatically trainable from generic MIDI files and
capable of finding the globally optimal harmonic la-
beling. Experiments are presented highlighting our
current state of the art. An extension to a more
complex probabilistic graphical model is outlined in
which music is modeled as a collection of voices
that evolve independently given the harmonic pro-
gression.

Keywords: harmonic analysis, music, probabilistic graphical
model, hidden Markov model

1 Introduction

A variety of musical analysis sometimes known as functional
harmonic analysis represents a musical passage as a sequence
of chords. The chords are expressed in terms of their function,
e.g. dominant or tonic, often written with corresponding roman
numerals, e.g. V or I. Each chord is analyzed in the context of
a key which modulates over time. The algorithmic study of this
type of analysis is the topic addressed here.

The most obvious application of harmonic analysis in music
information retrieval (MIR) would treat queries phrased in the
language of harmony: What are the earliest examples of the
use of German augmented sixth chords or Neapolitan chords?
Which Beatles songs have deceptive cadences? Where can I buy
the piece I heard on the radio with the harmonic progression I vi
IV V I repeated many times? It is likely that such applications
will be most useful to musicologists since the mere formulation
of such queries requires a more sophisticated understanding of
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harmony than would be expected of an average music enthusi-
ast.

A more subtle, yet perhaps more important, application to MIR
might be one of representation. Harmonic analysis reduces mu-
sic to a one-dimensional sequence of symbols from a small al-
phabet. The one-dimensional nature of this representation lends
it to the wealth of search techniques treating strings as the ba-
sic unit of study. Such string matching algorithms can find the
string in a database minimizing a variety of edit-like distances
in linear time. Pickens, Bello, Monti, Crawford, Dovey, San-
dler, & Byrd, (2002) show an example of a technique somewhat
like harmonic analysis for representation and retrieval.

More generally, the one-dimensional musical reduction af-
forded by harmonic analysis might form the basis for genre clas-
sification or the construction of various music similarity met-
rics. Perhaps such analysis might even serve as a useful compo-
sitional tool by making unexpected links between musical pas-
sages, as in Peter Schickele’s comical musical pastiches.

While we are interested in these applications, we find the study
of the cognitive or AI aspect of harmonic analysis ample moti-
vation by itself.

Our basic approach is statistical; this orientation and method-
ology distinguishes our work from most other efforts we know.
The most significant benefit of the probabilistic modeling we
employ is the ability to learn aspects of our model in an unsu-
pervised manner, for instance, using generic (unmarked) MIDI
data. However, we also inherit computational machinery that
identifies the globally best harmonic parse. In addition, we pre-
fer the transparency and honesty of a clearly specified proba-
bilistic model.

That said, we find common ground with several other previous
efforts in harmonic analysis. Krumhansl (1990) identifies key
by matching a histogram of pitches to a collection of possible
key templates. While our approach simultaneously identifies
chord and key, the actual computation that measures the ap-
propriateness of a particular key hypothesis is similar to that
of Krumhansl (1990). We share with Temperley and Sleator
(1999) the recognition that rhythmic content is useful in har-
monic analysis and the notion that harmonic analyses that fluc-
tuate rapidly between keys are implausible and should be dis-
couraged or penalized. Pardo (2002) builds upon this approach
with a dynamic-programming algorithm that optimizes over the
exponentially-many segmentations in a computationally effi-
cient manner. Dynamic programing is also fundamental to our



work.

An overview of the variety of approaches to harmonic analysis
is presented in Barthelemy & Bonardi (2001). Most approaches
with scope similar to ours are rule-based: the music is reduced
and recognized through a series of deterministic state transfor-
mations (merges, simplifications, intermediate labellings, etc.)
moving systematically toward a final representation. In our
view there are two principal disadvantages of rule-based ap-
proaches. First, such schemes fail to articulate any measure of
goodness of the possible “answers” and hence do not formu-
late the problem clearly. Second, rule-based schemes balance
each decision or transformation precariously on the shoulders
of previous decisions and hence irrevocably propagate errors
forward. Our approach, like that of Pardo (2002) is decidedly
not rule-based.

Another significant difference between our approach and all
others we know is our simultaneous recognition of chord and
key. The hope here is that the more structured sequence of chord
functions (e.g. tonic, dominant etc.) will help guide the analysis
when the choice of chord (e.g. c major triad, f minor triad, etc)
is ambiguous.

2 The Model

Our harmonic analysis is based on pitch and rhythm. At the
outset we acknowledge that there are likely no two elements
of music that do not interact in some musical situation; thus
limiting our treatment to these two elements undoubtedly loses
some relevant information. However, in most musical contexts
the human listener can easily base a plausible harmonic analysis
solely on pitch and rhythm. This and the rather obvious virtue
of beginning with simplicity lead us to start here.

Our harmonic analysis is performed on a fixed musical period,� , say a measure ( ����� ) or half measure, ( ��������� ). To
this end we partition the pitches in our musical composition
into a sequence of subsets 	�

����������	�� where 	�� is the collec-
tion of pitches whose onset time, in measures, lies in the in-
terval � � � ������� ������� . We notate this collection explicitly as
	 � � � 	 
� ����������	�!�#" where the number of pitches, $ , depends
on � . Our analysis is based only on pitch class so we regard the
pitches as elements of ��% � � �������&� ��� " where '
�)(�* �+% ��'�*���,�- �� ���������)(��)'�- �.�/� . While the extension of our approach to in-
clude enharmonic spellings is obvious, MIDI data clearly form
the lion’s share of available test cases at present; since MIDI
does not use enharmonic spellings, we do not model them.

Our goal is to associate a key and chord describing the harmonic
function of each period, 	0� . Thus each 	/� will be labeled with
an element of
1 �3254768479:�;��% ��������� ��� " 4<� major � minor " 4<� I � II ��������� VII "
where 2 � 6 � 9 stand for tonic, mode, and chord. For instance,
��=&��>?�)' �5� �A@B� major � II � would represent the triad in the key
of �C� , major built on the II = 2nd scale degree which con-
tains pitches e,g,b. We will ignore the usual convention of us-
ing lower and upper case roman numerals for minor and major
triads. While it is possible to use a broader range of possible
chords (in fact, we do in our experiments) nothing significant is
lost by limiting ourselves to the seven basic triads in this dis-
cussion. Similarly, it would be possible to include more modes
than the basic major and harmonic minor that we treat here. We

do not currently model chord inversion in this work.

Consider the common situation, occurring in a clearly estab-
lished c major context, in which we encounter the chord pro-
gression c major, d major, g major. In this case it appears that
d acts as the “dominant” of the dominant chord g major — a
so-called secondary dominant, often notated (V/V). Our basic
vocabulary of chords does not include any kind of secondary
chord, but such interpretations can still be represented using key
modulation. For instance, the above example can be represented
as (c=0, major, I), (g=7, major, V), (g=7, major, I). Clearly our
representation allows for a rich variety of secondary functional-
ity while avoiding murky distinctions between secondary func-
tion and actual modulation.

Let D 
 ��D#E�����������D � be the sequence of harmonic labels D �GF1
. We model this sequence probabilistically as a homogeneous

Markov chain

H ��IJ��KL
�M IN
�����������IJ� �O�PH �AIJ��KQ
�M IJ� �

The Markov assumption is of course only an approximation,
however we believe it captures quite a bit of musical structure,
especially when one considers the simplicity of the model. For
instance, the fact that keys tend to remain constant for relatively
long periods of time is easily expressed in terms of a Markov
model: the key at each time period is, with high probability,
the same as it was on the previous time period. Furthermore,
when the key is constant music is often composed of familiar
chord progressions such as the stabilizing I V I V I or the ubiq-
uitous Rock and Roll progression I IV I V IV I. While chord
progressions often have longer memory, as in the Rock exam-
ple, a significant component of functional harmonic behavior
is captured by transition tendencies: V tends to go to I, ii of-
ten goes to V, etc. Similarly, many of the tendencies for chord
transitions are mirrored by analogous key modulations tenden-
cies. For instance, as the chords I and V frequently appear side
by side, modulations to neighboring keys in the circle of fifths
are also common. (While treated separately in our model, these
phenomena are really not completely distinct). It is these tran-
sition tendencies that can be represented by a Markov chain.

We, of course, do not observe the sequence of labels
D 
 ����������D � directly, but rather our data 	 
 ����������	 � . The sec-
ond assumption of the hidden Markov model (HMM) is that
each data vector, 	 � , is an observation of a random variable,R � , whose distribution depends only on the current label:

H �A	��SM IN
�����������IJ�N��	�
���������	���TU
 �O�VH ��	��SM IJ� �

Essentially, this assumption says that every time we visit a state
(harmonic label) the data are obtained by “spitting out” a col-
lection of pitches from a distribution characteristic of the state.
Again, this is certainly not “correct,” however the pitch data
clearly does depend heavily on the harmonic label. While in-
cluding more structure (dependencies) may make the model
more realistic, it only helps our particular cause when it im-
proves the model’s ability to discriminate between harmonic la-
bels.

2.1 Hand-Tying of States

Our model is parameterized by the transition probabilitiesH �AIJ��KQ
�M IJ� � and output probabilities H ��	0�SM IW� � . One of the
greatest advantages of the HMM is that these parameters can be



learned automatically from unlabeled data, e.g. generic MIDI
files. However, at present the transition probabilities consist of
� ��� 4 � 4 � � E �:���/����� parameters — more than we can expect
to train reliably with a modest data set; a similar problem ex-
ists with the output probabilities H ��	 � M I � � . We introduce some
hand-crafted simplifying assumptions that lead to feasible train-
ing. As in the preceding, our research bias is for making our
assumptions explicit, even when they seem questionable.

Recall that each harmonic label, I , is a triple consisting of a
tonic, mode, and chord, I � ��=&��> ��' � . We model the transition
probabilities H ��I�� M I � as

H �AI � M I � � H �A= � ��> � ' � M =&��>?�)' �
� H �A= � ��> � M =&��> ��H � ' � M = � ��> � ��=&��> ��' � (1)

� H �A= �	� =&��> � M > � 
 H �A'�� M ' � =�� � =&��>
� � >H �A'�� � otherwise (2)������ ��� ��= � � =&��> � M > � 
 � E� �A' � M ' � = � � =&��> � � >� 
� �A' � � otherwise

In Eqn. 1 we have assumed that the probability of the new key,
=�� ��>
� , given the current state, =&��> ��' , H �A=�� ��>
� M =&��>?�)' � , does not
in fact depend on the current chord ' . The left factor of Eqn. 2
represents a translation invariance assumption about key mod-
ulations — the probability of modulating by some particular
interval does not depend on the current tonic. As one who
does not have perfect pitch and hears only relative pitch move-
ment, this and other pitch translation invariance assumptions
seem unassailable. (The difference =�� � = is taken modulo 12.)
The right factor of Eqn. 2 is composed of two assumptions. The
first (top) is that when the key is constant the chord transitions
do not depend on the current key. This is essentially another
translation invariance assumption and seems, to our mind, un-
deniable as long as we restrict our attention to either major or
minor mode. The assumption goes a bit further and asserts that,
for example, the probability of moving from I to V is the same in
both major and minor modes. The second (bottom) assumption
is that when we do move from one key to another we choose
the new chord and random without regard for the new or old
keys. We doubt this particular assumption would hold up un-
der empirical investigation but also doubt that a more nuanced
modeling of this case will achieve significant improvements in
recognition accuracy. These assumptions reduce the number of
parameters necessary to represent H ��I�� M I � to those involved in
the distributions ��� � � 
� � � E� : ���#4C�#4C� � � 4 � � � � ��%�� pa-
rameters, further reduced by the constraint that each probability
distribution must sum to 1.

In modeling the output distributions, H ��	SM I � , we have observed
that, while expressive dissonances are a mainstay of musical
surprise, surprise is almost by definition an exception to the
norm; in particular, we anticipate that chord tones are more
likely to occur on rhythmically strong beats than weak ones.
Rather than trying to quantify such a notion directly, we simply
allow the output distributions to depend on the known measure
positions in a manner we will learn from data. Thus we treat
the measure positions as covariates in our model and condition
on them as well as the chord label.

In particular, suppose that the pitch set 	 � 	 
 ����������	 ! has an
associated vector � � � 
 �����������
! where ��� labels the measure
position occupied by 	�� . In our experiments with music in 4/4
time we took ��� to be 0 if 		� occupies the start of a measure, 1

if 		� begins on the 2nd half note of the measure, 2, if 	�� lies on
the 2nd or 4th quarter note positions, etc. with a final category
3 for “other.” We then proceed to model

H �A	UM I ��� � � H �A	 
 ����������	 ! M I ��� 
 ����������� ! �
� !�

��� 

H ��	 � M I ��� � � (3)

� !�
��� 

H �A,W��		����I � M ��� � �A,W��	 � ��I ��� (4)

def� !�
��� 

��! � ,J�A		����I � M �"� � �A,W��	 � ��I ���

where

,W��	 � ��I �7� ,W��	 � ��=&��>?�)' � �
#$$$$$% $$$$$&
�(' is root of chord =&��>?�)'�)' is third of chord =&��> ��'
@ ' is fifth of chord =&��>?�)'�*' in scale =&��>

but not triad =&��> ��'+
otherwise

and
 �A, � is the number of chromatic pitches falling into the , th

category:
 � ���O�  � ���O�  �A@ �O�;� ;

 � ���7�,� ;
 � + � � + .

Eqn. 3 states that given the harmonic label, I , the pitches
	 
 ����������	 ! are random samples from their respective rhythm-
conditional ( � � ) distributions. While we expect that this as-
sumption will seem familiar to many, we believe it is among
the most problematic: the order in which pitches appear clearly
affects one’s harmonic perception. We will discuss a possible
variation on our model that does not make this assumption in
a later section. The assumption does, however, lead to a sig-
nificant reduction in model complexity. Eqn. 4 states that the
probabilities of observing the categories chord root, chord third,
chord fifth, non-triad scale tone, or non-scale tone are fixed and
do not depend on the harmonic label. There are several chro-
matic pitches in the latter two categories and our assumption is
that within a category the pitches will be equally likely. So, for
instance, for notes at a given measure position, the probability
of observing d in the IV chord of c major is the same as that of
b - in the I chord of d minor. Additionally the pitches c * , d * , f *
a - , b - all have the same probability in the key of c major, regard-
less of the particular chord, however this probability depends on
the measure position.

We denote these “output” probabilities by � ! where � ! �A,NM � � is
the probability of observing a pitch of category , F �0� ��������� + "
for a note beginning at rhythmic position � F ��% ��������� + " . These
assumptions reduce the number of parameters in the represen-
tation of H ��	SM I ��� � to

+ 4
- � @ % .
3 Training the Model

Our preference for the HMM, and, more generally, probabilis-
tic graphical models, is partly due to the way the model param-
eters — the transition probabilities parameters, � � � � 
� � � E� , and
the output distributions, �.! , can be trained from unlabeled ex-
amples. Since our model is based on rhythm as well as pitch,
essentially any collection of MIDI files that explicitly represent
both rhythm and pitch can be used for training. This is the case
for most MIDI files that do not come from actual performances.



The essential idea of the training is as follows. If we had a col-
lection of labeled data giving not just the pitch and rhythm in-
formation but the harmonic labels as well , I 
 ����������I � , then the
training process would be simple. For instance, � � � '�� M ' � could
be estimated as the ratio of the number of times we observed the
chords '
�)'�� is sequence (with common key) to the total number
of times we observed ' (with the next chord in the same key).
Similarly, � ! � ,WM � � would be estimated as the ratio of the of times
we observed a note of rhythm category � and pitch category ,
divided by the number of times we observed rhythm category� . (Note that the harmonic label must be known to compute
, � ,J�A	 � ��I � ). In practice, we don’t know the harmonic labels,
but given a configuration of model parameters, we can estimate
them. The idea of the forward-backward, or Baum-Welch algo-
rithm, is to iteratively estimate the hidden labels and reestimate
the model parameters. It is well known that this is an exam-
ple of the more general EM algorithm for maximum likelihood
estimation of parameters in a mixture model Rabiner (1993).

The harmonic labels IS

����������IW� are estimated through the
forward-backward iterations. We recursively define the forward
probabilities, � � ��I � � , for � � � ��������� � , I �GF 1 by� 
���IN
 � � H ��IU
 ��H �A	0
�M IN
 �� ��KL
 �AI ��KL
 � � �

�����
	
� ��I � � H ��I ��KL
 M I � � H �A	 ��KL
 M I ��KL
 �

and the backward probabilities, � � ��I � � , for � � � ��������� � ,
I �GF 1 by

�J� ��IW� � � �
�J� TU

�AIJ��TS
 � � �

� � �
	 �J�U��IW�
� H ��IW� M IW��TU
 � H ��	�� M IJ� �

A standard argument shows that � �U�AIJ� �#� H ��IJ�N��	0
�����������	/� �
where the latter is viewed as a function of IN� with the 	 ’s held
fixed; similarly, �W�U�AIJ� � � H ��IW�N��	���KL
�����������	�� � . The � and �
probabilities lead to label probabilities through

H ��I � M 	 
 ����������	 � �
� H ��IW�U��	�
�����������	�� � H ��	���KL
�����������	�� M IJ� �� ��
� H �AI �� ��	 
 ����������	 � ��H �A	 ��KL
 ����������	 � M I �� �
� � �U�AIJ� � �J�S�AIJ� �� � 
� � � ��I �� � � � ��I �� �

The probabilities H ��IW�SM 	0

����������	�� � function as surrogates for
the true class labels. For instance, in estimating the output dis-
tributions if H ��IW�SM 	�
�����������	�� � � ����� for some particular state
I � , then 	 � counts as 1/2 a sample from the output distribution
for I � . More precisely, we reestimate �.! by

� ! �A,NM � � � ������������ � ��� � � � � �� � � H ��IJ�LM 	0

����������	�� �� � �� � � H �AIJ� M 	0
�����������	�� �
A similar argument leads to a reestimate of the transition prob-
abilities. For instance, we can compute the probabilities

H ��IJ�N��IJ��KQ
�M 	0
�����������	/� �
� � � ��I � � � ��KL
 ��I ��KL
 � H �AI ��KQ
 M I � ��H �A	 ��KL
 M I ��KL
 �� � 
��� � 
����� � �U�AI �� � �J��KQ

��I ���KL
 � H ��I ���KL
 M I �� � H �A	���KL
�M I ���KL
 �

and reestimate � E� �A'�� M ' � by

� E� �A' � M ' �
�

� � � � � � � � � � � ����� � � ����� � � ��� � � � ������� � ��
 H ��IW�U��IW��KL
�M 	0
 ��������	�� �� � � � � � � � � � � ����� � � ����� � � ��� � � H ��IJ�S��IJ��KL
�M 	0
Q��������	�� �
where I � � �A= � ��> � ��' � � and I ��KL
 � ��= ��KL
 ��> ��KL
 ��' ��KL
 � .
We can also estimate � 
� and ��� in an analogous manner.

4 Experiments

We have performed a variety of training experiments, as dis-
cussed in section 3, involving around 5 or so short movements
and requiring several minutes of computing on a 1 GHz Linux
box. We generally perform around 5 iterations of the training
algorithm and learn both the output probabilities, � ! , and the
chord transition probability matrix, � E� . The remaining param-
eters of the transition probabilities, � � and � 
� , seem to require
larger training sets to be reliably estimated; we have set these
parameters by hand in the experiments here, but plan on auto-
matically learning them in the future.

Once the model is in place we compute our harmonic parse, �I ,
as the most likely labeling given the data:

�I �! 
"$#&%' )(� H ��IQM 	 �7�* )"+#,%' )(� H ��I ��	 �
where �I � ���IU

�����������IW� � , I � ��IN
�����������IJ� � , and 	 �
��	�
�����������	�� � . It is well-known that the global maximum, �I , can
be constructed with dynamic programming by letting -7
���IN
 �O�H �AIN
���	0
 �O�VH ��IU
 � H ��	0
/M IN
 � and recursively computing

-Q�U��IW� � ������ %. )(� � �0/0/0/ � � �)1�� H ��IU

����������IW�U��	0
�����������	�� �
� %. �(� ��1�� %. �(� � �0/0/0/ � � ��1
2 H ��IN
�����������IJ��TS

��	0
�����������	�� TU
 �
H �AI � M I ��TS
 ��H ��	 � M I � �

� %. �(����1�� - ��TS
 �AI ��TS
 � H ��I � M I ��TU
 � H ��	 � M I � �
for � � � ��������� � . From the definition of - � it follows that%. �( � H �AI ��	 � �3%. )( �54 - � �AI � � . The actual sequence �I �
���IU

�����������IW� � attaining this maximum can be identified by per-
forming a calculation parallel to - � : we define

6 �U�AIJ� � ������7 
"$#,%. )(� �)1�� -Q��TU
���IW��TU
 � H ��IJ�LM IW��TU
 � H ��	��SM IJ� �
� � � ��������� � . The

6 � functions lead to the optimal state se-
quence by �IW� � 6 ��KQ

���IW��KL
 � where �IJ� �8 )"+#9%. �( -L� ��IW� � .
While in many applications the dynamic programming recur-
sion is approximated with a “beam search,” the size of our state
space allows for full-fledged dynamic programming.

We have made several examples of our experiments available
on the web at
http://fafner.math.umass.edu/ismir03. These include the
first movement of Haydn Piano Sonata 6, the Chopin Raindrop
Prelude in D flat, Op. 28, no. 15, and the Debussy Prelude from
Suite Bergamasque. Our analysis is represented as a MIDI file
of a mechanical piano performance with the series of chords
produced by our algorithm superimposed as sustained harmon-
ica chords. In addition, text messages are written out giving
the harmonic label as a (roman numeral, tonic, mode) triple,



Label

Voice 1

Voice 2

aligned to highlight key changes. The messages are written as
chord changes occur, essentially annotating the MIDI perfor-
mance in real-time. All three examples mentioned above are
in 4/4 time to facilitate a uniform definition of the rhythm vari-
ables expressing the “strength” of measure positions, �
� . In the
Haydn and Chopin examples we only allowed harmonic transi-
tions to occur on 2 beat boundaries. This was relaxed to 1 beat
boundaries in the Debussy example, and results in a somewhat
overanalyzed labeling. As mentioned in section 2, the choice
of possible chords is somewhat arbitrary. In these experiments
we have added the dominant 7th chord to the seven basic triads.
Some basic extensions, such as fully diminished 7th chords and
chords in minor mode built on the flat seventh scale degree, are
needed in these experiments; however, more exotic additions
such as augmented sixth chords, and Neapolitan chords are pos-
sible.

These examples are representative of the more successful ap-
plications of our program. However, they are comparable to
the majority of cases we have examined in which our program
produces a plausible interpretation. (The less successful results
seem to mostly be compositions with very sparse textures). We
believe that these results are quite promising, especially taking
into account the simplicity of our approach. In addition we feel
there is significant potential for improvement with more careful
attention to modeling subtleties and larger-scale training exper-
iments. One of our future goals is to have a program on the
web that will automatically analyze a visitor’s submission and
produce an annotated MIDI file, as above.

At this point we do not offer any objective measure of success,
such as “error rate,” or comparison of our results. This is due,
in part, to the difficulty in defining and obtaining “correct” har-
monic analyses. However, we also believe that rather straight-
forward continued efforts may lead to significant improvements
and that evaluation will be more appropriate at a later stage.

5 Extending the Model

To our mind, the most troubling modeling assumption we make
is the conditional independence of pitches: in essence, the col-
lection of pitches associated with a chord is a random sample
from some distribution. This assumption disregards the way
music is usually composed of independent parts or voices that
obey an internal logic such as a preference for scales and arpeg-
gios. Given the often unvoiced nature of MIDI data and our cur-
rent focus on piano music, we have begun with a simple model
that does not require voicing information. However, we now
propose a model that regards the data as a collection of voices
where the evolution of each voice is conditionally independent
of the others, given the harmonic state.

Automatically partitioning MIDI data into voices is, no doubt,
a challenging problem if one requires the voicing to be identical
to the true voicing, if one exists, or the ground truth supplied by

a musician. But it is rather simple to create an algorithm that
performs reasonably. We use a simple dynamic programming
algorithm maximizing a function measuring the plausibility of
a voice partition. Other possibilities exist, such as in Kilian
& Hoos, (2002). We assume here that we begin with voiced
data, either from an official or algorithmic source. In particular,
we begin with a collection of monophonic overlapping voices
with no assumption about the number of voices that overlap at
any particular time or the range of pitches associated with a
particular voice.

Suppose that 	 
 ����������	 � is a sequence of pitch classes, repre-
sented as numbers in ��% ��������� ��� " , corresponding to a single
voice. Let D5
�����������D#� be the sequence of (key,chord) vari-
ables, assumed to be a Markov chain as before. We continue
to assume that 	/� is the observation of a random variable

R � ,
but unlike before we now assume that the distribution of

R � de-
pends on D � and

R ��TU
 , rather than just D#� . Figure 5 shows a
graphical representation of such a model containing two condi-
tionally (on D ) independent voices.

Such a model, suitably trained, would understand a voice’s
preference for scales within the key, arpeggios within the
(key,chord) pair, and tendencies regarding the resolution of non-
chord tones. These preferences should assist in distinguishing
between various chord hypotheses, given data.

While this model is not an HMM, it has a linear structure
amenable to an analogous training algorithm as well as the iden-
tification of the most likely state sequence. Thus the model is
every bit as computationally tractable as the HMM.
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