
Music Notation as a MEI Feasibility Test

Baron Schwartz
University of Virginia

268 Colonnades Drive, #2
Charlottesville, Virginia 22903 USA

bps7j@cs.virginia.edu

Abstract

This project demonstrated that enough information
can be retrieved from MEI, an XML format for mu-
sical information representation, to transform it into
music notation with good fidelity. The process in-
volved writing an XSLT script to transform files into
Mup, an intermediate format, then processing the
Mup into PostScript, the de facto page description
language for high-quality printing. The results show
that the MEI format represents musical information
such that it may be retrieved simply, with good recall
and precision.

1 Introduction

Most uses of musical information require storage and retrieval,
usually in files. Unfortunately, files created for one purpose may
not be usable for others, and the files may be incompatible even
when the uses are similar. This is true of the many file formats
that exist. Because each fails to address some need adequately,
and because the formats are not extensible, there is a plurality of
formats, leading to vast bodies of computer-encoded knowledge
that cannot be shared effectively. It is often possible to translate
between formats, but unless the data is trivial, some information
is usually lost.

The need for a universal format is self-evident; one would like
to encode data once and use it many times for many purposes.
Perry Roland, a researcher at the University of Virginia’s Digital
Library project, is developing MEI (Music Encoding Initiative)
into such a format (Roland, 2002). MEI uses XML (Extensi-
ble Markup Langauge), a universal data-interchange syntax, to
define a musical-data encoding.

MEI is different from existing formats in that it supports all
of the widely identified “domains” in which music exists: vi-
sual, gestural, performance, and analytical. Most existing lan-
guages only address the visual domain. The other major XML
format, MusicXML, is designed as a notational interchange for-
mat (Good, 2001). MEI defines music as an abstract concept,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. c©2003 Johns Hopkins University.

something more general than either notation or performance,
but does not leave important domains, such as notation, up to
the implementer. The MEI format’s design also allows a pro-
cessing application to ignore information it does not need and
extract the information of interest. For example, the format in-
cludes information about page layout, but a program for musical
analysis can simply ignore it.

Generating printed music notation is a revealing test of MEI’s
capabilities because notation requires more information about
the music than do other domains. Successfully creating notation
also confirms that the XML represents the information that one
expects it to represent. Because there is a relationship between
the information encoded in both the MEI and Mup files and the
printed notation, the notation serves as a good indication that
the XML really does represent the same music as the notation.

2 Methods

Music notation is so complicated to create that it was infeasible
to write a program to view MEI as notation directly for this
project. However, it was a fairly simple matter to transform
MEI into Mup, a plain-text format that represents commands
to the Mup interpreter. This has its disadvantages: it means
learning another notation file format, it involves several lossy
steps, and it subjects the resulting notation to any constraints of
the notation software. However, it is a reasonable way to check
MEI’s basic capabilities.

Because MEI files are written in XML, the easiest way to trans-
form them to Mup notation is with XSLT , a functional pro-
gramming language written in XML syntax and designed for
XML transformations. This involves writing XSLT templates,
which are mappings that specify the desired output format for a
given input, for each type of element in the MEI file. The tem-
plates define the transformation to the equivalent Mup notation;
thus the relationship between MEI and Mup syntax is defined
formally by the XSLT script. Unfortunately, the Mup syntax is
not defined formally, so it is not possible to verify formally that
MEI is equivalent to the resulting PostScript notation file.

3 Test Pieces

To test the transformations, it was necessary to transform some
complicated pieces. The following pieces are used to test the ca-
pabilities of various encoding formats (Selfridge-Field, 1997).
The examples transformed are rendered very similarly to the
original. In most cases, the XML files from which these pieces



were produced are not specially “tweaked,” other than scaling
the notation to fit correctly onto the page. Exceptions are noted
in the text.

Perry Roland encoded these test pieces and furnished them for
testing. They may be found in several formats at the MEI web-
site,
http://dl.lib.virginia.edu/bin/dtd/mei/ .

3.1 The Mozart Trio

This example is taken from the second trio section of Mozart’s
Clarinet Quintet. The challenge is transposing the first staff,
which is notated in C Major but, since it is played on an A
clarinet, is actually in A Major. It is very well rendered on the
whole. There is a phrase or tie that begins on the last note of
the first staff, but since there is no note for it to extend to, Mup
ignores this. Mup also places some phrase marks oddly, such as
the phrase mark on the tuplet, and has trouble with phrases that
cross system breaks.

3.2 The Mozart Piano Sonata

This example has mixed durations within chords, grace notes
preceding chords, and arpeggiated grace notes. The arpeggio
on staff 1 in the first measure also crosses voices. In this case,
Mup’s default placement of the slurs on the left-hand grace
notes is not optimal, so the slurs are encoded with explicit end-
points and curve values. Mup cannot slur to an entire chord,
as in the right-hand part in measure 4, so those are also placed
explicitly.

3.3 The Saltarello

This piece demonstrates multiple endings. The sections were
originally numbered with a small number above the staff in the
first measure of each section. This information is not encoded
in the XML, but could have been.

3.4 The Telemann Aria

This example demonstrates lyrics and multiple voices. Many of
the notes have small (“cue” size) heads, and the voices are ex-
tremely complex. Mup’s default note placement does not match
the original in some places, but little can be done about this
without hand-editing the Mup code after it is transformed. It
is necessary to remove the fourth voice from the piece before
Mup will process it. Mup is limited to three voices, but addi-
tional voices can be notated by placing the notes manually.

3.5 Unmeasured Chant

This example is difficult to render with Mup because there is no
meter signature. Mup requires each bar to have exactly the right
number of notes, so it is necessary to change the time signature,
instruct Mup not to print the time signature, and print invisible
bars.

3.6 The BinchoisMagnificat

This example demonstrates several tricky layout problems Mup
does not handle gracefully. In particular, there is no way in Mup
to get a stem to point down on the right-hand side of a note. It
was necessary to use a small macro to get Mup to draw a line
in the appropriate place. This macro is embedded in the XSLT.
Some of the other interesting features of this piece are the ab-
sence of note stems in the first measure, the absence of a second
staff in the first measure (Mup displays the staff, but there is

none in the original), and a number of editorial elements, such
as editorial accidentals. The first measure is also in5

4 time, but
the time signature is hidden until it changes to3

4 in the second
measure. The key signature and clefs should be placed in the
second measure as well, but Mup’s default behavior does not
re-display the clef and key signature in bar 2. This could be
encoded explicitly in the XML to force Mup to display it as
required.

4 Conclusion

As the examples demonstrate, MEI represents musical data well
enough to generate acceptable printed music notation. Because
MEI is written in XML format, the information in a MEI file is
accessible and easy to manipulate. This may mean that MEI can
be used for many other, far more general, application domains.
For example, using XSLT, it is relatively simple to extract those
notes having a certain pitch followed by another note at a cer-
tain interval. It would also be easy to extract bibliographical
information from a MEI file (and highly efficient as well, since
this information is at the beginning of the file). Since XML is
supported by a wide variety of software, writing tools to work
with MEI files should also be greatly eased.

The transformation itself is simple, efficient, and demonstrates
good recall and precision in the retrieval process. The trans-
formation itself is straightforward, and merely involves writing
XSLT templates for each element in MEI; with few exceptions,
the MEI elements map easily to Mup notation. The retrieval
demonstrates good recall, since the music notation is clearly the
correct result of the transformation, and good precision, which
can be inferred intuitively from the fact that the music notation
is indeed that information for which the transformation queried.

Future research should test the MEI format for other purposes,
such as the analytical domain, to assess its feasibility as a uni-
versal musical data encoding format. Transformations to and
from other formats would also enhance its usefulness as an
interchange format. An obvious transformation would be the
reverse of the one described in this paper, from Mup to MEI.
This may be difficult because of the informal nature of the Mup
format, but should be possible with a two-step process to first
“canonicalize” the Mup notation, then transform it to MEI.

References

Extensible Markup Language (XML)(n.d.). Retrieved August
11, 2003 fromhttp://www.w3.org/XML/

Good, Michael (2001). MusicXML for Notation and Analysis.
In Hewlett, Walter B. and Eleanor Selfridge-Field (Eds.),The
Virtual Score: Representation, Retrieval, Restoration: Vol. 9.
(pp. 113–124). Cambridge, MA: MIT Press.

Roland, Perry (2002). The Music Encoding Initiative (MEI).
In Haus, Goffredo and Maurizio Longari (Eds.),Proceedings
of the First International Conference on Musical Applications
Using XML(pp 55–59). Milan: State University of Milan.

Selfridge-Field, Eleanor (1997). Introduction: Describing Mu-
sical Information. In Selfridge-Field, Eleanor (Ed.),Beyond
MIDI: The Handbook of Musical Codes(pp. 3–37). Cam-
bridge, MA: MIT Press.

XSL Transformations (XSLT)(n.d.). Retrieved August 11, 2003
from http://www.w3.org/TR/xslt


