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Modelling “Errors”

Goal: What are they singing?
Challenge: Several noisy steps between source 
and query…
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A sufficient (parsimonious) error model

Given a query sequence q1 q2 q3… qm and a potential 
match t1 t2 t3… tn :

– Match strength = # of positions at which qi = ti

Any transformation can be accounted for, but…
– Alignment: What will they sing?
– Edits: What happens if notes are added, or missing?
– Context: What about key/register differences?
– All errors are not created equal!

How can we explicitly address these issues in an error 
model?



What will they sing?



Edit errors

Transcriber or 
singer may drop 
or add notes
Represent using 
state transition 
model
Why not 
conventional 
string edit?



Context errors

Different tempi, different keys
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<Edit, Transposition, Tempo>



Changing context errors

Tempo and transposition 
can “wander”
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Local errors

Out of tune, poor rhythm query
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Note competing 
explanations for 
“errors”!
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Why not use a parsimonious model?
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Paying interest…
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Related work

Kalman Filters: Support continuous changes in context
HMM and Edit Algorithms: Support local errors XOR 
changes in context (representation dependent)
Distributed HMM: Support discrete changes in context, 
branching
Dynamic Bayesian Networks: Support continuous changes 
in context, branching



Model Features
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Full model

“Local” error only “Cumulative” 
error only
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Contributions

Develop a unified and comprehensive model for QBV 
applications
Demonstrate experimentally tradeoffs between model 
simplicity and retrieval performance
Other dimensions along which QBV apps can vary:

– Treatment of alignment
– Continuous vs. discrete observation space
– Symbolic (e.g., notes) or lower-level (e.g., pitch-track)
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