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Modelling “Errors”

e
e Goal: What are they singing?

e Challenge: Several noisy steps between source

and query...

o b -
] =] 3
= | e =y
- =1 - — — .__..___._ﬁ_‘_‘_' =
di}n. nw
Senza sopil.
arggy Allegro ma non troppo -
— 1 rt,s ,,_]g_’r__l_l____ PP L em e P 2
- — S—— - r - i .~ S—— < — 1 B S . 7~ 7 A—
T — - {0 e O S S Ea— ' 1
9—%#, Gi—i’rﬁt; _Fj_bL_____ij T Jﬁ‘i :
ni nta (3




Modelling “Errors”

S
e (Goal: What are they singing?

e Challenge: Several noisy steps between source

and query...
sord.
:_;-co\:{ Allegro ma non troppo
| o A B i l

eyl A am S
Y= ji._ L - 2 ].'-__IL_ #

i |
t +

()



A sufficient (parsimonious) error model

e (iven a query sequence ¢, ¢, ¢5..- ¢,, and a potential
match ¢, ¢, 15... ¢, :
~ Match strength = # of positions at which g, = ¢,
e Any transformation can be accounted for, but...
— Alignment. What will they sing?
— Edits: What happens if notes are added, or missing?
— Context: What about key/register differences?
— All errors are not created equal!

e How can we explicitly address these issues in an error
model?



What will they sing?
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— States referencing the 1 target event.

Edlt errors

° Transcnber or
singer may drop
or add notes )}

e Represent using
state transition
model

e Why not
conventional
string edit?
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Context errors

e
° Different tempi, different keys
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e Incorporate notion of “cluster” in state:
<Edit, Transposition, Tempo>



Changing context errors
S

e Tempo and transposition
can “wander”
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L.ocal errors

e Out of tune, poor rhythm el | query
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Why not use a parsimonious model?
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Paying interest...
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Related work
«

Kalman Filters: Support continuous changes in context

HMM and Edit Algorithms: Support local errors XOR
changes in context (representation dependent)

Distributed HMM: Support discrete changes in context,
branching

Dynamic Bayesian Networks: Support continuous changes
in context, branching



Model Features
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Full model
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Contributions
« 1

Develop a unified and comprehensive model for QBV
applications

Demonstrate experimentally tradeoffs between model
simplicity and retrieval performance

Other dimensions along which QBV apps can vary:
~ Treatment of alignment
— Continuous vs. discrete observation space

- Symbolic (e.g., notes) or lower-level (e.g., pitch-track)
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