PHILIPS

Effects of song familiarity, singing training and recent song exposure on the singing of melodies

Steffen Pauws

ISMIR 2003, Baltimore, USA

PHILIPS

Contents

- Motivation
- What do we know?: Memory for melodies
- What do we know?: Singing melodies
- Experiment
- Conclusion: Implications for 'query by humming'

Motivation

- 'Query by humming' requires people to sing
- But, how well do people sing
- We do not know that well!

Lack of knowledge on

singing skills of the general public

long-term memory issues

how that all relates to the singing by 'professionals' and

real-world song material (everyday singing)

 How can knowledge on singing be used in 'query by humming' applications?

Memory for melodies

- What properties are essential for a melody?
- Almost always essential are:
 - rhythm
 - intervals
 - contour
- But, you can change
 - key
 - tempo
 - timbre
 - loudness

without changing the melody

Memory for melodies

Rhythm is essential

(Marilyn Boltz, Mari Riess Jones, Edward Large, Carolyn Drake)

- Listeners attend rhythmically to music
- Just tapping the rhythm can be sufficient to recognise wellknown melodies
- Melodies under a different rhythm are hard to recognise
- Melodies with complex rhythms are hard to remember

Memory for melodies

- Contour and intervals are essential
 - (W. Jay Dowling, Dane Harwood, Judy Edworthy, Wouter Croonen)
 - The contour is the first thing you learn about a new melody
 - Melodies with the same contour get easily confused
 - For cueing long-term memory, intervals are required
- Only with
 - increasing song familiarity
 - increasing cognitive abilities (child → adult)
 - musical training

intervals become more important

Singing melodies

- Singing refers to articulating a recalled melody
- Voice is the most difficult musical instrument (Lee Davidson, Daniel Levitin, Perry Cook, Johan Sundberg)
 - Delicate control of muscles with auditory feedback
 - Untrained singers tend to
 - · use only a contour to control their singing
 - sing large intervals flat
 - accumulate interval errors (ending in a different key)
 - be unable to reflect on and improve their singing
 - However, some people can sing their favourite song at the correct pitch and at the correct tempo

Study of

- singing familiar and less familiar songs of 'the Beatles'
- being a trained singer or an untrained singer
- singing from memory and after listening to the song on CD
 (trial 1 and 2: singing from memory; trial 3: singing after listening)

Participants

- Trained singers: 8 students 'Classical voice' and 'Musical theatre' from Tilburg school of music
- Untrained singers: 10 colleagues without any singing education

Material

12 songs, 'The Beatles', '1', EMI, 2000

PHILIPS

Sing the songs once more after listening to the song on CD

Sort the 12 cards with Beatles song titles

Sing 2 (most) familiar songs and 2 less (least) familiar songs twice from memory

Experiment Measures

- Singing measured by
 - Tuning ('starting at the correct pitch?')
 - Contour ('following the ups and downs?')
 - Intervals ('singing the correct tone distances?')
 - Tempo ('singing at the correct tempo?')

Using reference melodies and tempo measurements of the original songs on CD

All reproductions were manually segmented

Results: general

- 216 (18*4*3) reproductions of 12 Beatles songs
- Trained singers sang more notes (45) than untrained singers did (28)
- For familiar songs
 - 36 notes were sung (min: 12, max: 94)
- For less familiar songs
 - 19 notes were sung (min: 3, max: 65)

Results: tuning

- Measure: deviation from the correct tone in semitones
- When singing from memory
 - participants chose randomly a pitch to start with
 - no absolute memory for the correct pitch
- After listening
 - trained singers (15/32) were better in adopting the correct pitch than untrained singers (9/32)
 - familiar songs (15/36) were better pitched than less familiar ones (9/36)

Experiment Results: tuning

Experiment Results: tuning

Results: contour

- Measure: percentage correctly going 'up' or 'down'
- In general
 - trained and untrained singers performed equally well (80%)
 - contours of familiar (82%) and less familiar songs (78%) were sung equally well
- After listening
 - contours of less familiar songs improved (75% → 82 %)

Results: interval

- Measure: percentage correctly sung intervals
- In general
 - trained singers (62%) sang more correct intervals than untrained singers (56%) did
 - familiar songs (63%) were better sung than less familiar ones (55%)
- After listening
 - the singing of less familiar songs improved (53% →61%)
 - the singing of familiar songs did not

Results: tempo

- Measure: average beats per minute sung, correlated and compared with actual tempo on CD
- In general
 - trained and untrained singers performed equally well (r > 0.9)
 - tempo of familiar songs came close to actual tempo (r > 0.9)
 - tempo of less familiar songs came *not* that close to actual tempo (0.8 < r < 0.9)
- After listening
 - matching the actual tempo improved

Results: tempo

- People cannot perceptually discriminate tempi that differ less than 6% (JND = 6%)
 - A tempo of 100 bpm is perceived similar to all tempi in the range of 94-106 bpm

- Taking this finding into account
 - 30% of reproductions had the 'correct' tempo, when singing from memory
 - Evidence for latent absolute memory for tempo
 - 49% of reproductions had the 'correct' tempo, after listening

Experiment Results: tempo

Experiment Discussion

- Study did not assess
 - the beauty and the willingness of singing
 - song complexity
 - music idiomatic differences
- It did assess singing performance while varying
 - singing training (trained and untrained singers)
 - song familiarity (familiar and less familiar songs)
 - recent exposure (singing from memory and after CD listening)

Experiment Discussion

- No absolute memory for pitch; trained singers adopted the correct pitch only after listening to the song
- Some latent absolute memory for tempo: 1 out of 3
- Trained and untrained singers did not differ on contour (80%), they did on interval (62-56%)
- Except for contour, familiar songs were better sung than less familiar ones, but less familiar ones improved after listening to them
- Both trained and untrained singers improved their singing after listening to the song

Conclusion

Implications for 'query by humming'

- Query by humming
 - Melody retrieval by search algorithms
 - Finding optimal alignment between pitches and durations of sung melody with melodies in database while taking into account singing errors

Conclusion

Implications for 'query by humming'

- Users choose a random pitch to start
- Users sing contour and tempo most reliably
- Users sing intervals less precisely
- Singing performance differ on song familiarity, singing training and recent exposure, retrieval performance likewise
- Important user data for accurate retrieval
 - How familiar are you with the song?
 - When was the last time you listened to the song?
 - What is your singing ability (training)?
- and change search accordingly

PHILIPS

Conclusion

Implications for 'query by humming'

Retrieval performance statistics of 'CubyHum' QBH system on singing data using 1000-melody database (melody ~ 300 notes)

