Ground Truth Transcriptions of Real Music from Force-Aligned MIDI Syntheses

Robert J. Turetsky and Daniel P. W. Ellis {rob, dpwe}@ee.columbia.edu Columbia University, LabROSA Dept. of Electrical Engineering

MIDIAlign: Talk Organization

- The Polyphonic Transcription Problem
- Proposed Solution: MIDI Alignment
- Method and Experiments
- Time to evaluate the situation
- Immediate and Future Directions

The Polyphonic Transcription Problem

Simple Melodies: Easy to transcribe

Complicated Melodies:

- Layers of instrumentation
- Vocals and special effects
- Harmonic interference
- The rhythm section
- Only "trained ears" with exposure to large amounts of music and music theory can transcribe rich real-world polyphonic music

The Polyphonic Transcription Problem

- Feature-based methods for simple (e.g. monophonic) melodies
- For real-world transcription need statistical pattern recognition framework

The "Black-Box" Approach

We could use the signal as evidence for pitch class in a black-box classifier

- To train and evaluate these methods, we need large corpus of labeled note examples!
- N.E.R.: Note Error Rate for evaluation

Labeling Music: Prior Work

- Problem: Need labels for training and evaluation, but most music transcriptions not available!
- Solution 1: Sheet music
 - Only gives "flavor" of popular music
- Solution 2: Synthesized MIDI files
 - 128 General MIDI instruments cannot characterize the full "sonic range" of modern studios
- Solution 3: Record MIDI tracks directly from studio
 - Tracks extremely difficult to come by
 - Popular music often produced with samples

The Trouble with MIDI Transcriptions

- MIDI transcriptions are freely available, but:
- MIDI files have transcriptions of music but do not accurately represent music signal
 - Can only (poorly) approximate vocals, timbres
- Transcriptions are an interpretation of the original work by an amateur:
 - Does not respect precise timing and duration of original song
 - May not be accurate transcription
 - Transposition, phrase sequence, different versions, possible melody characterization

Our Solution: MIDI Alignment

 Goal: To map each note event from MIDI transcription (syn) into window of original song (raw)

The MIDIAlign Method

MIDIAlign: Feature Selection

- Want to match pitches present but not timbres → spectral features, not MFCC
- Base Feature: FFT bins up to 2.8 kHz
- Added Features:
 - spec_power {'dB', 0.3, 0.5, 0.7, 1, 2}
 - diff_points {0, [1 16], [1 64], [224 256]} Highlight note onset/offset times
 - freq_diff {0, 1}
 Focus on local harmonic structure
 - noise_supp {0, 1}
 Attempt to remove noise from drums and fx

Alignment: The Similarity Matrix

$$\begin{split} SM(i,j) &= \frac{spec_{raw}(i)^T spec_{syn}(j)}{|spec_{raw}(i)||spec_{syn}(j)|}, \\ & \text{for } 0 \leq i < N, \quad 0 \leq j < M \end{split}$$

- Each point in
 Similarity Matrix
 (SM) is cos
 distance between
 frames in raw/syn
- By searching for "best path" in SM we can find mapping from syn to raw
- Based on Foote, 1999

DP: Finding the Best Path

- Best warping function is the "best path" through the similarity matrix
- SM can be treated like dynamic programming (DP) distance matrix to search for best path
- Two DP flavors: unconstrained vs. greedy

Unconstrained DP can navigate around missed notes, but gives a rough alignment

Greedy DP has smooth structure when notes are transcribed correctly, but is catastrophic with errors!

Two Stage Alignment: Getting the Best of Both Worlds

- Unconstrained DP to find "accurate" regions that align well
- Use greedy DP to smooth out rough alignment estimates for final mapping
- Median filter can find "straight" segments

MIDIAlign Examples

More examples: http://www.ee.columbia.edu/~rob/midialign

MIDIAlign Experiments

- Set of 30 songs from different genres
- MIDI files downloaded from user sites indexed on http://www.musicrobot.com
- MIDI synthesized using WAVmaker III
- Notes extracted using Perl::MIDI
- Audio files taken from local music library or filesharing services
- All analysis done at 22.05 kHz
- Alignments for all feature values evaluated aurally (1..5) to derive best featureset.

MIDIAlign: Results

	Score				
Featureset	1	2	3	4	5
spec_power = 0.5	6	2	7	6	15
spec_power = 0.7	6	3	4	10	14
spec_power = 1.0	6	4	13	5	9
spec_power = 0.7, diff_points = [1 16]	5	6	4	11	13
spec_power = 0.7, diff_points = [1 64]	6	7	0	4	21
spec_power = 0.7, freq_diff = 1	7	5	6	11	4
spec_power = 0.7, noise_supp = 1	28	1	0	1	0

Evaluating the Alignments

- In order to develop large corpus, we need many alignments
- Many MIDI files available on www are of marginal quality from dubious sources
- Automatic evaluation of alignments on MIDI files spidered from web is imperative
- Most discriminatory Evaluation Metric: average "best path" distance percentile amongst entire SM

Future Directions

- Improve alignment features: e.g. overtones
- Account for decay after "note off" MIDI event
- Evaluate corpus generated from web spider
 - 35 hours of music with 1.5 million note events
- "Proof of concept" classifier to perform pitch extraction based on training data only
- Improve classifiers with music models similar to Walmley, et al 1999 based on statistical analysis of MIDI files
- Evaluate the effect of studio effects (e.g. reverb) on classifiers built with aligned labels