Geometric Algorithms for Transposition Invariant Content-Based Music Retrieval

Esko Ukkonen, Kjell Lemström, and Veli Mäkinen The C-BRAHMS project

Department of Computer Science, University of Helsinki {ukkonen,klemstro,vmakinen}@cs.helsinki.fi

ISMIR'2003, October 26–30, Baltimore, USA.

The Task

Given the pattern, i.e. a short music excerpt of m notes

find whether it has transposed occurrences in a source: a large database of polyphonic music comprising n notes.

Straightforward Solution: Stringology

- 1. Encode music by using strings of pitches (or intervals).
- 2. Apply classical string matching methods (e.g. dynamic programming) separately for each monophonic voice.

Does not work if:

- too much musical decorations (noise) are present,
- voicing information is not available,
- the pattern may be distributed across the voices.

Geometric Representation of Music

We represent music by using line segments [s, s'], where

- $s = (s_x, s_y) \in \mathbb{R}^2$ is the starting point,
- $s' = (s'_x, s'_y) \in \mathbb{R}^2$ is the ending point,
- and $s_y = s'_y$ and $s_x \le s'_x$.

The segment consists of the points between its 2 end points.

Example of geometric representation:

In the special case, when s = s'; segments become points in \mathbb{R}^2 .

Definitions of the Problems

- (P1) Find translations of P such that all starting points of P match with some starting points of T.
- (P2) Find all translations of P that give a partial match of starting points of P among starting points of T.
- (P3) Find translations of P that give longest common shared time with T .

Complexities (worst case): best known vs. our

Problem	Time	Space
(P1) best known	$O(mn)^1$	O(m)
our	$O(mn)^1$	O(m)
(P2) best known	$O(mn\log(mn))$	O(mn)
our	$O(mn\log m)$	O(m)
(P3) best known	-	-
our	$O(mn\log m)$	O(m+n)

 $^{^{1}}$ O(n) on the average

Solving (P1) ("Total Matching")

- Notes as points in \mathbb{R}^2 (the special case).
- Generalize the naïve string matching algorithm (see also Lemström and Tarhio 2000; Meredith et al. 2001):
 - Use m pointers, q_i , each pointing to events in T.
 - Function $next(q_i)$ gives the next element in lexicographic order in T.


```
Algorithm P1
(1) for i \leftarrow 1, \ldots, m do q_i \leftarrow -\infty
(2) q_{m+1} \leftarrow \infty
(3) for j \leftarrow 1, ..., n - m do
(4) 	 f \leftarrow t_j - p_1
(5) i \leftarrow 1
(6)
     do
(7) 	 i \leftarrow i + 1
(8) q_i \leftarrow \max(q_i, t_j)
(9)
                while q_i < p_i + f do q_i \leftarrow next(q_i)
(10) until q_i > p_i + f
     if i = m + 1 then output(f)
(11)
(12) end for.
```

Solving (P2) ("Partial Matching")

- Notes as points in \mathbb{R}^2 (the special case).
- (P2): find translations f such that $(P+f) \cap T$ is nonempty.
- We call such P + f a partial occurrence of P in T.
- We need:
 - m pointers q_i (as above);
 - a priority queue F (min queries and updating: $O(\log m)$);
 - and a counter c.

CoreOfP2

- (1) $f \leftarrow -\infty; c \leftarrow 0;$ **do**
- (2) $f' \leftarrow min(F); update(F)$
- (3) if f' = f then $c \leftarrow c + 1$
- (4) **else** $\{output(f,c); f \leftarrow f'; c \leftarrow 1\}$
- (5) until $f = \infty$

Solving (P3) ("Longest Common Time Matching")

• Task: find translation f such that line segments of P+f intersects T as much as possible.

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y) ;
- \bullet priority queue F;
- array F_y .
- 4m pointers q_i to define $turning\ points$ in a feature space:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y) ;
- \bullet priority queue F;
- array F_y .
- 4m pointers q_i to define $turning\ points$ in a feature space:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y) ;
- \bullet priority queue F;
- array F_y .
- 4m pointers q_i to define $turning\ points$ in a feature space:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y) ;
- \bullet priority queue F;
- array F_y .
- 4m pointers q_i to define $turning\ points$ in a feature space:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y) ;
- \bullet priority queue F;
- array F_y .
- 4m pointers q_i to define $turning\ points$ in a feature space:

vertical translations.

Conclusions

The three presented algorithms solved the considered problems

- (P1) total matching;
- (P2) partial matching; and
- (P3) longest common time matching in time and space:

Problem	Time	Space
(P1)	O(mn)	O(m)
(P2)	$O(mn\log m)$	O(m)
(P3)	$O(mn\log m)$	O(m+n)